Element Energy


← Older posts Newer posts →

Digital roundtable on hydrogen mobility brings together leading MEPs, government representatives and hydrogen experts

Posted on


A high-level roundtable on hydrogen mobility took place on Tuesday 17th November, bringing together MEPs, government representatives and experts on hydrogen to discuss the contribution of hydrogen to the European Green Deal objective of carbon neutrality by 2050.

MEPs and representatives from the European Commission struck a positive tone on the role hydrogen has to play as an enabler of both transport decarbonisation and a renewably-powered society, and stressed its convenience and flexibility of use. Additionally, participants commented on how they expected hydrogen technology development to foster European industry competitiveness and secure future-oriented jobs, as well as to retain employment across Europe. All speakers noted that a robust European legislative and financial framework (e.g. CEF blending) will need to be established to allow hydrogen mobility technology to be rapidly scaled across Europe in the coming years so it can fulfil its potential.

The event was a partnership between the European Commission’s Fuel Cells and Hydrogen Joint Undertaking (FCH JU), Hydrogen Europe and the EU’s flagship projects demonstrating hydrogen road transport applications: H2ME & H2ME 2 (passenger cars and light commercial vehicles), JIVE & JIVE 2 (buses), ZEFER (passenger cars in commercial use) and H2Haul (trucks). Speakers specifically highlighted the instrumental role that the FCH JU has played in kickstarting hydrogen mobility in Europe and the importance of securing a sufficient amount of funding in the next research and innovation partnership.

On fuel cell buses, the number of cities deploying these zero-emission buses for future transport was shown to be growing substantially thanks to the JIVE and JIVE 2 projects, the projects alone deploying nearly 300 buses. Thanks to joint procurements and economies of scale, JIVE and JIVE 2 have further seen a growing number of European bus manufacturers offering fuel cell models at more competitive prices, thus showing  an increasing industry competitiveness. These projects represent also a practical example of the use of different EU funding streams, as the hydrogen infrastructure in some locations is co-funded via CEF (via the MEHRLIN project). Access to joint funding streams and synergies between different funding and financial instruments was stressed as an important tool to accelerate hydrogen mobility uptake.

Progress was also identified regarding heavy-duty trucks. With EU carbon targets requiring a 15% reduction for this sector by 2025 and at least a 30% reduction by 2030, suppliers are pushing to develop zero-emission alternatives. The H2Haul project has been established as a first step in this direction with European suppliers deploying fuel cell trucks in four locations across Europe. Speakers noted that the expansion of hydrogen refuelling infrastructure inappropriate locations is crucial to facilitate the decarbonisation of heavy-duty transport, and the importance of linking the European TEN-E and TEN-T corridors was highlighted by different speakers. Calls were made for ambitious targets on hydrogen refuelling infrastructure deployment to be included in the upcoming revision of the Alternative Fuels Infrastructure Directive (AFID) as well as reviewing and linking the important TEN-T and TEN-E corridors.

The importance of highly utilised hydrogen refuelling stations to the uptake of hydrogen passenger vehicles is something that has been brought into sharp relief by the H2ME project. Both the H2ME and ZEFER projects have demonstrated competitive business cases through the deployment of clusters of ‘captive fleet’ fuel cell vehicles (e.g. taxis) with high mileage. The H2ME recommendation for European, national, regional and local incentives to create a level playing field – in a technology-neutral approach – for the deployment of hydrogen mobility technology was ultimately shared by the roundtable speakers as they concluded their arguments.

Thanks are extended to the speakers that came together to facilitate such a constructive dialogue: MEP Marian-Jean Marinescu, Mr Bart Biebuyck (Director of the FCH JU), Mr Herald Ruijters (Director in DG MOVE, European Commission), MEP Christophe Grudler, Mr Adam Mutwil (Head of division, electromobility, charging and hydrogen infrastructure, German Ministry for Transport and Digital Infrastructure), MEP Ismail Ertug, Mr Lorenz Jung (Chief Project Officer, H2Mobility Deutschland), Ms Lisa Ruf (Senior Principal Consultant, Element Energy), Mr Patrick Cnubben (Manager, New Energy Coalition), and Mr Marco Liccardo (Head of Trucks Global Product Line, CNH Industrial/IVECO) as well as to Mr Jorgo Chatzimarkakis, Secretary General of Hydrogen Europe, who moderated the event

The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) is a Public-Private Partnership in which the European industry, research, academia (represented by Hydrogen Europe and Hydrogen Europe Research) and the EU (represented by the European Commission) work together to accelerate the deployment of fuel cell and hydrogen technologies. The FCH JU supports a wide range of projects, which help to put the EU at the forefront of research and innovation, bring the benefits of the technology to the citizens and enhance industry competitiveness.





Posted in Hydrogen and Fuel Cells, Project Management

SmartSTEP project brings smart EV charging to residential urban streets in industry first

Posted on


Low carbon energy consultancy Element Energy is to lead a consortium of energy industry stalwarts to deliver new on-street electric vehicle charging infrastructure, enabled by smart meters to integrate seamlessly with the existing electricity network. The consortium includes charge point start-up Trojan Energy, renewable electricity provider Octopus Energy, and Landis+Gyr, a leading global provider of integrated energy management solutions.

As part of its Beyond Off Street programme, the UK Government’s Department for Business Energy & Industrial Strategy (BEIS) recently awarded £856,000 funding through its Energy Innovation Programme to the Smart Subsurface Technology for Electric Pathways (SmartSTEP) project. SmartSTEP aims to incorporate smart functionality to the innovative on-street charge points being developed by Trojan Energy.

Whilst smart charging is already in use for home charging and at dedicated public EV charging bays, SmartSTEP will be the first demonstration of smart charging in shared parking spaces on residential streets. This trial will involve charge points slotted into the pavement which will provide access to charging for those that do not have driveways or garages.

The project is split into two Phases: Phase One involves the design, development and testing of the system. In this phase, already underway, Trojan Energy are working alongside Landis+Gyr and Octopus Energy to develop an effective smart charging system. Using the latest technology pioneered by Landis+Gyr as the major supplier in the national smart meter roll out, the charging system will benefit from the most advanced SMETS2 functionalities.

Should Phase 1 be successful, in Phase Two the smart charging system will be trialled. SmartSTEP builds on the STEP project (funded by OLEV) which will see 200 of Trojan’s charge points deployed on streets in the London Boroughs of Brent and Camden from spring 2021. SmartSTEP will involve upgrading 100 of these devices with Landis+Gyr’s SMETS2 smart meters. A crucial aspect of the project will be determining the user experience for customers during the trial – an area where Element Energy’s sectoral expertise will provide significant value.

Sarah Clements, Project Manager from Element Energy commented:

“Smart charging is a vital enabler of the EV transition, allowing the fine balancing of both customer needs and electricity network constraints. Whilst already available for drivers who charge at home, smart charging has never been tested in an on-street context before. This is essential for ensuring low cost charging is available to all, and we are proud to be managing this industry first project that will help deliver Great Britain’s interconnected electricity and transport system.”

For the full press release, please click here.

For more information on the project please contact Sarah Clements, the project manager, at sarah.clements@element-energy.co.uk.



















Posted in Transport

Royal Borough of Greenwich publishes draft Carbon Neutral Plan ahead of public consultation

Posted on

The Royal Borough of Greenwich in South-East London has published a draft of its ambitious Carbon Neutral Plan, which sets out the Council’s strategy to respond to the climate crisis. The Carbon Neutral Plan sets out actions the Council will take between 2021 and 2030 to cut green-house gas emissions from all sectors of the economy, including:   

  • Making council-owned homes, offices and other buildings fossil-fuel free and more energy efficient 
  • Reducing car use in the borough by 45% by 2030 and transitioning the council’s fleet of vehicles to be 100% zero emissions 

Element Energy have assisted the borough in developing and writing their strategy throughout the process. An initial Element Energy Evidence Base report, published in January 2020, used bespoke regional emissions modelling to establish a baseline for emissions and assess the potential impacts of mitigation options to produce a list of high priority actions for immediate considerationThese actions were then refined through cost-benefit analysis, business case development and consultation with council officers and other stakeholders to develop the new strategy.  

Feedback from residents and other local stakeholders will be sought in a public consultation opening in December before a final version of the plan is adopted by the Council.  

For further information contact Alistair Duffey or Sam Foster.

Posted in Buildings, Policy and strategy, Transport

UK takes the next STEP in curbside electric vehicle charging

Posted on


World-first technology that could unlock electric vehicle charging for people without driveways or garages is being trialed across London.

Startup company Trojan Energy is installing 200 of its chargers across Brent and Camden. Each charge point is slotted into the ground with a flat and flush connection. The technology has no permanent footprint or street clutter as the hardware is only visible when a vehicle is charging.

The Subsurface Technology for Electric Pathways (STEP) project has been awarded £3m in co-funding by Innovate UK. If successful it will enable entire streets to be filled with the charge points so that no matter where a driver parks, they will be able to charge their EV.

The technology consists of 2 parts – a charge point slotted into the ground, and a ‘lance’ which is inserted into the charge point in order to charge. The charger can provide charge rates from 2kW to 22kW, and up to 18 chargers can run in parallel from one electricity network connection. This will in turn create opportunities for electric vehicle owners to use spare capacity in their batteries to provide services to electricity network operators which could make the cost of owning and running EVs cheaper.

The trial will be located in the London boroughs of Brent and Camden, both of which are at the forefront of the EV transition in the UK.  Both boroughs have rapidly growing EV usage, encouraged by council policy determined to drive down air pollution in their neighbourhoods.

Element Energy will be leading the project using their sectoral and project management expertise, to achieve the best commercial and environmental return for investment.

Celine Cluzel, Element Energy Director, said “STEP is trialling a solution to what is often the Achilles’ heel of charging infrastructure: scalability. The project is also conducting research on consumer and wider street users’ preference – a typical gap in research so far. These facts, combined with the excellent team brought together, make us confident that the trial will be a significant step forward for the uptake of electric vehicles.”

Other members of the consortium include UK Power Networks, Birmingham City Council and the University of Leeds. Award winning renewable electricity supplier Octopus Energy will also be recruiting their customers for the trial and providing expertise in backend billing which will be invaluable to EV owners.

For the full press release, please click here.















For more information on the project, please contact Sarah Clements at sarah.clements@element-energy.co.uk.

Posted in Transport

Element Energy-led H2Haul project welcomes its new partner Bosch

Posted on




The H2Haul (Hydrogen Fuel Cell Trucks for Heavy Duty Zero Emissions Logistics) project, co-financed by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU), is pleased to welcome Bosch to the consortium.

Bosch brings significant experience to the H2Haul project. The leading automotive component manufacturer will work alongside FPT Industrial, with the support of their collaboration partner PowerCell Sweden AB, on the heart of the hydrogen powertrain for all IVECO trucks in the project: the fuel cell power module.

The introduction of Bosch into the H2Haul project is a strong signal that the European industry is positioning itself as a vital part of the Green Recovery from the COVID-19 pandemic. This is a key step towards fostering Europe’s industrial competitiveness in the heavy-duty transport sector as global decarbonisation efforts accelerate.

The announcement of Bosch’s participation in H2Haul comes after a historic day for the hydrogen sector: On 8 July,  the European Commission’s unveiled the Communication: ‘A hydrogen strategy for a climate-neutral Europe‘ and launched the European Clean Hydrogen Alliance. The Communication foresees a significant role for hydrogen in decarbonising heavy-duty transport in Europe, which is in line with industry commitments.

Fuel cell trucks are already beginning to operate on Europe’s road network while a growing number of OEMs and hydrogen infrastructure providers are positioning themselves in the heavy-duty market. H2Haul will play a vital role in accelerating the development of zero-emission European trucks that can directly replace diesel vehicles, offering the same driving range and load capacity to their operators.



















Dr Uwe Gackstatter, president of the Bosch Powertrain Solutions division, said ‘Fuel cells will play an important role to reduce CO2 emissions in future mobility, for example, in long-distance use cases of heavy commercial vehicles. We are happy to join H2Haul because the joint expertise of all partners drives the hydrogen technology forward and demonstrates feasibility in operative use’.

Michael Dolman, Associate Director of Element Energy, stated ‘It is encouraging to see one of Europe’s leading automotive component manufacturers embracing fuel cells for heavy-duty vehicles. We’re delighted to welcome Bosch to the H2Haul project and look forward to a productive collaboration that will accelerate the deployment of zero-emission trucks in Europe’.

Bart Biebuyck, Executive Director, Fuel Cells and Hydrogen Joint Undertaking, said ‘A steep decarbonisation of the transport sector, including trucks, will be vital for the realisation of the Green Deal vision. Today we welcome another European technology leader in the H2haul project.  We are excited to witness this strong consortium working together to ensure that fuel cells and hydrogen solutions “made in the EU” will play a central role in meeting the challenge’.

Background Information

About H2Haul 

The H2Haul project (Hydrogen fuel cell trucks for heavy-duty, zero-emission logistics) is a Fuel Cells and Hydrogen Joint Undertaking (FCH JU) grant funded (€12m) project deploying 16 zero-emission fuel cell trucks in four demonstration sites. The project will run for five years from 2019 and is co-financed by the FCH 2 JU under the European Union – Horizon 2020 framework programme for research and innovation under the project number 826236.

The following organisations are participating in the H2Haul project: Air Liquide, BMW, Bosch, Element Energy Limited, ElringKlinger, Eoly, FPT Industrial, H2 Energy, Hydrogen Europe, IRU Projects, IVECO, Powercell Sweden, Sphera, VDL Enabling Transport Solutions, WaterstofNet. The trucks will be operated by a German logistics company (for BMW Group logistics), Blondel, Chabas, Coop, Colruyt Group, Carrefour, ID Logistics Malherbe and Perrenot.

Website: http://h2haul.eu/

About the FCH JU 

The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) is a unique public-private partnership supporting research, technological development, and demonstration (RTD) activities in fuel cell and hydrogen energy technologies in Europe. It aims to accelerate the market introduction of these technologies, realising their potential as an instrument in achieving a carbon-lean energy system.

The three members of the FCH JU are the European Commission, fuel cell and hydrogen industries represented by Hydrogen Europe and the research community represented by the research grouping Hydrogen Europe Research.

Website: http://www.fch.europa.eu/

About Element Energy

Element Energy Limited is a leading low carbon energy consultancy that provides services across a wide range of sectors including transport, power generation, energy networks, and the built environment. Element Energy has worked in the hydrogen and fuel cell sector for nearly two decades and has expertise in the initiation and coordination of innovative demonstration projects.

Website: http://www.element-energy.co.uk

Posted in Hydrogen and Fuel Cells, Project Management

C4U: Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

Posted on


Element Energy is excited to be part of C4U, a Horizon 2020 funded program addressing the requirements for optimal integration of advanced carbon capture technologies in the iron and steel industry. Element Energy will be leading the Long Term Business Models work package, advising on policy and business models for the project’s successful incorporation into the North Sea Port CCUS cluster.

For further information, please contact Emrah Durusut.

Posted in CCUS & Industrial Decarbonisation

Element Energy trialling an online platform using smart meter data to boost SME access to energy efficiency

Posted on

Following a successful small-scale pilot last year, Element Energy has launched a year-long trial of an online platform, using small businesses’ smart meter data and business characteristics to provide tailored feedback and advice on energy efficiency.

The platform enables businesses to calculate typical savings and payback times for investing in efficient equipment and other efficiency measures, based on their existing equipment and usage. It also provides tailored comparative feedback on how each SME’s energy usage compares to similar businesses, along with many other features to help businesses engage with their energy usage and support them to invest in energy efficiency. Feedback from the pilot phase was positive, for example multiple users reported that the advice around energy efficient investments was particularly valuable and the calculator tools were helpful for assessing whether specific investments were appropriate for their businesses.

The project is funded by the Department for Business, Energy & Industrial Strategy (BEIS) under Phase 2 of the Boosting Access for SMEs to Energy Efficiency (BASEE) competition. The trial is being run in partnership with Opus Energy (part of Drax Group) and Octopus Energy, with trial participants coming from the customer bases of these energy suppliers. The participants include a wide variety of SME businesses from the retail, hospitality and office sectors. The trial will run until March 2021 and aims to demonstrate the benefits of the platform to SME businesses and to further enhance the platform to be suited to SMEs across all business sectors.

For more information on this project please contact Jonathan Stokeld and Mark Hughes.

Posted in Buildings, Energy Networks, Smart Energy Systems

Peterborough council-led partnership to design the largest smart city regeneration project in the UK

Posted on


Plans for the design of the largest smart city-wide energy system in the UK have been unveiled. The £2m scheme will cut energy bills and provide green heat, electricity and transport for residents.

The Peterborough Integrated Renewables Infrastructure project (PIRI) combines a next generation heat network, electricity network and EV infrastructure under one holistic scheme.

Led by Peterborough City Council the two-year project has been granted funding to begin the design of a local, smart energy system. The partnership includes: SSE Enterprise, Element Energy, Cranfield University, Smarter Grid Solutions and Sweco UK.

The PIRI project brings together energy generation, demand and storage, thereby unlocking efficiencies not deliverable under our existing, traditional energy systems. It is envisaged to be especially effective in areas where the electricity network is constrained; as well serving as a blueprint for other urban locations across the UK.

PIRI will be part funded by UK Research and Innovation (UKRI) Prospering from the Energy Revolution challenge and unlock major social and economic value for the Peterborough area from 2022. Significant private sector investment has been secured for and by members of the partnership who each have existing decarbonisation expertise.

The project is one of five to win funding to create a pipeline of innovative and investable local energy system designs that will be ready to roll out across the UK in the 2020s.

Peterborough is one of the fastest growing cities in the UK whilst also being committed to reducing its carbon emissions. Its PIRI project aims to deliver a significant drop in CO2 emissions by 2030, whilst cutting energy bills by up to a quarter.

Cllr Marco Cereste, cabinet member for the environment at Peterborough City Council, said: “This exciting announcement will give Peterborough the opportunity to use its own green, locally produced electricity and heat to benefit residents. It’s a landmark step in our aim to be carbon-neutral by 2030 and will be the most exciting and innovative clean, green energy project the city and indeed the country has ever seen.”

Nathan Sanders, Managing Director of SSE Enterprise Distributed Energy, said: “PIRI is an exciting project for us to be investing in. We hope it will demonstrate the potential of smart cities to drive local decarbonisation in a commercially viable manner.

“It takes a ‘whole systems approach’ to energy one step further by integrating all socio-technical elements into one solution that can help councils hit their net zero targets. We are proud to work with leading partners and an enlightened council leadership to enhance the lives of UK citizens.”

Jim Kent, CEO at Smarter Grid Solutions, said: “We are very excited to join a world-class team and demonstrate how system flexibility and commercial models, such as Energy as a Service, can be used by forward-thinking cities like Peterborough, to deliver on their ambitious net zero plans whilst also reducing energy costs for citizens and enabling economic growth.”

Shane Slater, founding director and Smart Energy Systems team leader for Element Energy, said: “Our future energy supply can be clean and low cost, but this comes with a key challenge of much greater variability in energy generation.

“Element is delighted to support PIRI, which will demonstrate how integration of the diverse energy demands of heat, transport, and electricity, balancing supply and demand across day-to-day and seasonal variations, can deliver an efficient energy infrastructure that will be clean, secure and affordable for end users for decades to come.”

Max Joy, president at Sweco UK, commented: “We can’t underestimate the challenges in achieving net zero carbon and, by the same token, the ambitious nature of this project. The real brilliance in the approach, which will also be the defining element of its success, is to integrate wider infrastructure into energy management where all strands can play together.

“Taking this holistic perspective means that far greater benefits will be realised, hitting the sweet spot between environmental gains and commercial viability, while Peterborough will lead the way as a sustainable city of the future.”

Processor Simon Pollard, Pro-Vice-Chancellor, School of Water, Energy and Environment and International at Cranfield University, said: “Cranfield University has a growing portfolio on smart cities and is delighted to contribute its expertise to PIRI.

“Sharing the learning from practical projects like this has proven instrumental to ensuring that communities and industry benefits from innovative designs.  This unique partnership will help Peterborough and the UK achieve real energy system improvements.”

Minister for Business, Energy and Clean Growth, Kwasi Kwarteng, said: “Every corner of the UK has a part to play as we eliminate our contribution to climate change entirely by 2050. This innovative project in Peterborough will deliver energy savings and reduce carbon emissions – a win-win for communities and the environment.”

Rob Saunders, Challenge Director, Prospering from the Energy Revolution, UKRI said: “This innovative project provides new approaches to delivering our net zero commitments by delivering cleaner, cheaper energy services while creating more prosperous and resilient communities.

“But as well as their benefits to consumers, this project, as part of the Clean Growth Industrial Strategy Grand Challenge, place UK industry at the forefront of the global shift to clean energy systems and economies.”








For more details on this project, please contact Sam Foster.

Alternatively, for further information/interview requests please contact Ed Black at SSE Enterprise at edward.black@sse.com or 07584 313 782.

Posted in Buildings, Energy Networks, Smart Energy Systems

Gigastack Phase One Feasibility Study: Identifying a route to low-cost, zero-carbon hydrogen at Gigawatt-scale

Posted on


Gigastack Phase 2 was publicly launched on 18th February 2020 to demonstrate the delivery of bulk, low-cost, zero-carbon hydrogen in the UK to Gigawatt scale. This project brings together a consortium comprised of ITM Power, Ørsted, Phillips 66 and Element Energy to show how renewable hydrogen derived from offshore wind can support the UK’s 2050 net zero greenhouse gas emission target. This project is built upon the foundations of Gigastack Phase 1. Funded by BEIS’ Hydrogen Supply Competition, the Gigastack Phase 1 feasibility study enabled ITM Power, Ørsted and Element Energy to demonstrate the potential for renewable hydrogen for the UK. As a result of this project, the consortium delivered the following primary conclusions:

  • ITM Power has furthered the designs of its next generation of innovative stack technology. The new 5MW stack will enable the development of the 100MW electrolyser systems that are required to meet the UK’s legally binding net zero target by 2050. These installations will come at a fraction of today’s cost, with the installed electrolyser system costing less than £400/kW.
  • These stacks will benefit from cost reductions due to ITM Power’s new Giga-Factory at Bessemer Park, Sheffield. This will come about due to standardisation and industrialisation. As a result of the capacity modelling and machine analysis, the factory will manufacture 60 stacks per year from 2023 (300MW/yr), tending towards 200 stacks per year in the mid-2020s (1GW/yr).
  • The most significant contributor to the cost of renewable hydrogen is the cost of the electrical input. Work by Element Energy and Ørsted assessed siting the electrolyser in innovative locations and exploiting electrolyser-windfarm configurations to reduce these costs. Today, the cost of renewable hydrogen from grid-connected electrolysers is more than £8/kg. The pathways analysed here for the new 5MW electrolyser and power supply, without full exposure to grid fees, could deliver a produced renewable hydrogen relative cost saving of more than 50%. With further regulatory intervention, commercial optimisation, industrialisation and increased production volumes of electrolysers the results of the feasibility study show further potential cost reductions of up to 50% (scenario dependent).
  • Combined the reduced stack cost, increased manufacturing capacity and the innovative technical configurations enabled the consortium to identify viable business cases for supplying hydrogen to industry and transport end-users. This is enabled through cost competitive renewable and high purity hydrogen at a range of scales, not possible for reformers with carbon capture and storage (CCS) due to the high purification costs and inflexibility in build capacity.
  • An analysis of the hydrogen demand from target markets for renewable hydrogen (i.e. industry, transport, hydrogen for heat) both nationally and internationally from 2020 to 2030 validates ITM Power’s proposal decision to ramp-up to a factory capacity of 1GW/yr over an accelerated timeframe. In all scenarios considered, the hydrogen market deemed accessible to ITM Power’s new 5MW stack far exceeded their production rate of 1GW/yr from 2025. The High Ambition scenario even demonstrated that two additional factories of similar capacity would be required to satisfy the accessible demand by 2030.

The Public Report provides in greater detail the findings from this study and the need for renewable electrolytic hydrogen at scale in the UK.

For further information, please contact Matt Wilson or visit www.gigastack.co.uk.

Posted in Hydrogen and Fuel Cells

Northern Powergrid publishes Distribution Future Energy Scenarios

Posted on


Northern Powergrid, the Distribution Network Operator for  Yorkshire, the Northeast and northern Lincolnshire, has published their Distribution Future Energy Scenarios presenting different potential futures for the region they serve based upon analysis performed by Element Energy. Element Energy produced regionally bespoke scenarios of future demand and generation for Northern Powergrid based upon the 2019 Future Energy Scenarios published by National Grid, the Electricity System Operator for Great Britain. These scenarios feed into the Element Energy Load Growth model that Element Energy built for Northern Powergrid as part of a recent Network Innovation Allowance project. This tool allows them to investigate the impact of the different future demand and generation scenarios on their distribution network to help them plan for how the electricity network can support decarbonisation in their region. These regional forecasts, including the uptake of low carbon technologies such as electric vehicles, can be investigated at a local authority level in an interactive online tool. Northern Powergrid are now running consultations, supported by Element Energy and ODI Leeds, to get feedback from local stakeholders on their plans for decarbonisation to help inform the next iteration of their Distribution Future Energy Scenarios.

You can see the full Northern Powergrid press release here.

For more details on this work please contact Jake Howe or Mark Hughes.












Posted in Energy Networks
← Older posts Newer posts →