Element Energy

News

← Older posts

Element Energy supports Hager Environmental & Atmospheric Technologies (HEAT) in deploying remote sensing technology across Scotland’s major cities to tackle road pollution

Posted on

 

Element Energy and their partners HEAT and The International Council on Clean Transportation (ICCT) have been awarded a three year contract by Transport Scotland, the national transport agency for Scotland. HEAT, with expertise from Element Energy, will utilise Emissions Detection and Reporting (EDAR) technology to monitor vehicles in Scotland’s Low Emission Zones. A large dataset will be accumulated over the three years, providing in-depth analysis to assist enforcement and policy making regarding vehicle emissions.

Celine Cluzel, Director at Element Energy said “Remote sensing technology is an effective tool to map and understand pollution in our cities, this study will provide useful data and test a technical solution for policy makers to develop strategies to tackle road pollution”. Additionally, the remote sensing system will be the first to be installed in Scotland, helping Scotland to achieve its road pollution and emissions targets in the future.

Emission Detection and Reporting (EDAR) system will be installed and runs 24 hours a day, 7 days a week capturing data on levels of pollutants such as carbon dioxide and nitrous oxides for a short period of time. Remote sensing is a great option for monitoring fleet emissions due to its ability to identify individual high- or low-emitting vehicles and to screen for groups of high-emitting vehicles for market surveillance.

One key example of the previous successes of EDAR deployment was an Anti-Tampering campaign in the Flanders region of Belgium in 2019. Through HEAT’s remote sensing system, over 210,000 valid measurements were recorded accurately, including vehicles travelling up to 170kmh on a motorway. The Flemish government successfully identified and pulled over 86% of tampered vehicles, compared to 9% before the campaign.

The full Press Release can be found here: https://pressat.co.uk/releases/hager-environmental-and-atmospheric-technologies-heat-awarded-multi-year-emission-testing-contract-in-scotland-f8e05c94abe6c3035b2795c1eddd3354/

Read more at: https://www.heatremotesensing.com/

Posted in Project Management, Transport

EU OYSTER Consortium chooses Grimsby for its future innovative “marinised” electrolyser

Posted on

 

The OYSTER Consortium choose Grimsby, in the Humber region, as the location for the production and trial’s tests of its innovative ‘marinised” electrolyser.

The OYSTER project funded by the Fuel Cells 2 and Hydrogen Joint Undertaking (FCH JU), aims to investigates the achievability and potential of integrating an electrolyser system into an offshore wind turbine. To this end, the project will develop a compact electrolysis system that can withstand harsh offshore environments, have minimal maintenance requirements and still meet cost and performance targets enabling production of low-cost hydrogen. This technology could unlock mass markets for renewable hydrogen and assist the transition to a clean renewable system overall.

Element Energy is supporting the OYSTER project consortium as overall coordinator of the project, working alongside ITM Power, Ørsted and Siemens Gamesa Renewable Energy. Element Energy is also in charge of communication activities and techno-economic analysis report for the project.

Michael Dolman, Partner at Element Energy, said: “Since supporting the formation of the OYSTER project, we’ve seen a growing number of projects planning offshore hydrogen production and increasing interest in this area from a wide range of stakeholders. With the selection of a location for the demonstrator, OYSTER is progressing well and will play a valuable role in advancing electrolysis technology for offshore applications.”

Link to the Full Press Release

Posted in Project Management

Zemo publishes Element Energy Low Carbon Hydrogen Well-To-Tank Emissions Study

Posted on

Element Energy is excited to have worked with the Zemo Partnership to produce a comprehensive study of the well-to-tank emissions for emerging low carbon hydrogen supply chains. Hydrogen is likely to play an important role in transport decarbonisation, particularly heavy duty, long-haul applications. However, it is critical that the lowest-emission supply chain options are supported in the path to net zero.

This study is very timely in the context of the recent Transport Decarbonisation Plan and shows that there are many clean hydrogen pathways. Policy makers must now put in place the frameworks to make sure the cleanest pathways are delivered, to support the UK transition to a net zero economy.

Many production options are available, all of which bring important benefits for scaling up hydrogen production. Our work forms an important part of the evidence base in assessing the complementary roles that should be played by these technologies.

 

Link to full report

 

Posted in Uncategorized

ERM acquires Element Energy to strengthen leadership in low-carbon tech advisory

Posted on

 

13 July 2021: The world’s largest pure-play sustainability advisory firm, ERM, has acquired Element Energy, a specialist energy consultancy that works with organizations to implement integrated low-carbon technology solutions that help solve their net zero and decarbonization challenges.

The acquisition brings deep expertise to ERM in the development, commercialization and implementation of emerging low-carbon technologies, such as hydrogen and fuel cells, electrification, energy storage and carbon capture use and storage (CCUS).

With extensive experience across the built environment, transport and mobility, energy and wider industrial sectors, the company adds approximately 90 employees, based in the UK, France and Australia, to ERM’s +5,500-strong firm.

The deal follows recent acquisitions of renewable energy consulting firm RCG, and energy and sustainability strategy consultancy E4tech. Overall, ERM has announced seven acquisitions so far in 2021.

Keryn James, CEO, ERM said: “As companies look to deliver on their net zero commitments, low-carbon technologies will play a critical role in accelerating the clean energy transformation. With this latest acquisition, we are further strengthening our leadership in this rapidly expanding sector.

This puts us in a unique position to help our clients unlock the huge potential of current and disruptive low-carbon technologies, and to support them at all phases of their decarbonization journeys. We are thrilled to welcome Element Energy to the ERM Group.”

Ben Madden, Director, Element Energy: “We are delighted to be joining ERM. We are very much looking forward to deepening our relationship with the ERM Group over the coming months, following numerous successful collaborations pre-acquisition. We are confident that the alignment in values between our organizations means that we will have a successful future serving the needs of our clients and bringing about the change required to achieve the global energy transition.”

About Element Energy

Element Energy, founded in 2003, provides integrated solutions to help clients deploy low-carbon technologies and supporting systems on a large scale. The company drives the development, commercialization and deployment of emerging low-carbon technologies, often for the first time, through its work with organizations, and its leadership role in international research and development consortia.

About ERM

Founded 50 years ago, ERM is the largest global pure-play sustainability consultancy. The firm employs more than 5,500 consultants across 160 offices in over 40 countries. It reported gross revenues of over $1 billion in the 2020 financial year (ending March 2020).

Posted in Company news

Electric cars already the cheapest option today for many European consumers, Element Energy reveal in BEUC consumer presentation

Posted on

 

On 29th April, BEUC – The European Consumer Organisation lead a wide-ranging online debate on the topic of Electric car ownership: an affordable option for all consumers. This launch event presented research from an extensive Element Energy report Electric Cars: Calculating the Total Cost of Ownership for Consumers, which analysed the Total Cost of Ownership⁽¹⁾ of car powertrains bought new between 2020-30 at an EU-level and in 9 European focus markets⁽²⁾.

Low Carbon Transport Team director, Celine Cluzel, revealed the 5 key messages of the Element Energy study:

  1. Affordable Battery Electric Vehicles (BEVs) are just around the corner – BEVs are already the cheapest powertrain for medium sized cars on a lifetime basis today in Europe
  2. BEVs bring most benefits to less affluent second and third owners – a BEV bought in 2020 will save ca. €8,400 for its combined used owners over an equivalent Petrol ICE
  3. There are opportunities to maximise the benefits of BEVs by educating high mileage users and providing consumers with a range of different battery sizes
  4. Policymakers must mitigate risks to consumers, and ensure that EU and national-level investment, critical for improving charging infrastructure for consumers, is not diverted away into E-fuels and by subsidising the uptake of hybrid vehicles
  5. Tightening European manufacturer CO2 targets is essential to achieve Europe’s decarbonisation ambitions

Launch event slides presented by Transport Team director Celine Cluzel

Wide-ranging implications for EU policy:

Pascal Canfin, Member of European Parliament (MEP) from Renew Europe Group, described how over 50 transport and energy European Directives and regulations will need to be revised and tightened to deliver the European Commission’s Green Deal, which was first announced in December 2019. According to Canfin, “We are at the beginning of a radical transformation of our mobility. Electrification is accelerating and that is why I advocate setting a deadline to phase out combustion vehicles by 2035.”

Monique Goyens, BEUC Director General, drew attention to the importance for consumers of strengthening manufacture emission targets and accelerating the roll-out of charging infrastructure:

“The EU’s CO2 emission thresholds for cars are clearly hitting the target. What was more or less sci-fi five years ago, is rapidly becoming a realistic opportunity for the consumers across Europe. Tightening car CO2 targets is therefore a no-brainer and a win for the environment, public health, people’s wallets and social inclusiveness as we fight the climate crisis.

“At the same time, consumer groups do not intend to gloss over the issues people face in the move to electric driving. For those that depend on a car, charging an electric vehicle must become as easy as fuelling a petrol one. That is why we advise the EU to push for more and better charging infrastructure, with easy payment methods and where the prices should also be easily comparable per kilowatt hour.”

 

A full list of debate speakers included:

Pascal Canfin, European Parliament

Celine Cluzel, Element Energy

Mélissa Chevillard, UFC-Que Choisir (French consumer organisation)

Daniel Mes, European Commission

Julia Poliscanova, Transport & Environment

Monique Goyens, BEUC – The European Consumer Organisation

Petr Dolejsi, European Automobile Manufacturers’ Association – ACEA

 

(1) The Total Cost of Ownership (TCO) compares vehicles beyond their purchase price to estimate the real cost for consumers throughout the ownerships of a vehicle. This includes: 1) vehicle pricing and components costs; 2) efficiency measures required by EU regulation; 3) market depreciation; 4) fuel/electricity costs and consumption; 5) taxes (VAT, registration tax, annual tax) and subsidies; 6) insurance and maintenance costs.

(2) European Focus market considered in the Element Energy TCO study are: Belgium, Cyprus, France, Germany, Italy, Lithuania, Slovenia, Spain, Portugal

Acronyms: BEV – Battery Electric Vehicles; ICE – Internal Combustion Engine

About BEUC – The European Consumer Organisation: a umbrella group for 45 independent consumer organisations from 32 countries. BEUC’s main role is to represent its members to the EU institutions and defend the interests of European consumers. This covers a range of topics including competition, consumer rights, digital rights, energy, redress and enforcement, financial services, food, health, safety, sustainability and trade policy.

Posted in Transport

Element Energy supports UK Power Networks’ planning for local heat decarbonisation through the “Heat Street” project

Posted on

Element Energy recently authored the Heat Street report for UK Power Networks, the electricity distribution network operator for London, the South East and the East of England. The work took a data-driven look at future pathways to decarbonise heat, and aims to help local authorities, community energy groups, and network operators plan for the deployment of energy efficiency and low carbon heating solutions.

Element Energy modelled the uptake of low carbon heating and energy efficiency across a large range of home and non-domestic building types and at a detailed spatial resolution (Lower Layer Super Output Area [LSOA] level). This allowed us to explore heat scenarios with outcomes ranging from close to 100% electric heating to a scenario with widespread use of hydrogen for heat.

One key finding of the work is that we project a widespread uptake of heat pumps across all scenarios, as these are found to be the most cost effective low carbon heating solution for many buildings. Even in a hydrogen-led heating scenario, over 700,000 heat pumps are deployed in the UK Power Networks license areas by 2030, representing 10% of the domestic building stock in the region.

An infographic produced by UK Power networks summarising the outputs of the project can be seen here: https://innovation.ukpowernetworks.co.uk/infographic-the-electric-heat-revolution/

High resolution project output data giving can be downloaded here: https://innovation.ukpowernetworks.co.uk/projects/heat-street-local-system-planning/

For more details on the work please contact Sam Foster.

Posted in Buildings

“HyPSTER”: realising the First EU-supported large scale Green Hydrogen Underground Storage Demonstrator

Posted on


HyPSTER is the first EU supported project aiming for large scale green hydrogen underground storage in salt caverns. The demonstration facility will be realised in France. The project with a total budget of 13MEuro has been granted a 5-million-euro grant by the Fuel Cells and Hydrogen Joint Undertaking (FCH 2 JU).

 

At the beginning of the year 2021, the project is launched with a subsurface and surface engineering study, which precedes the field-testing phase. This project will make it possible to better identify the position of storage in the hydrogen value chain. In the long term, this demonstrator aims to support the development of the hydrogen economy in Europe.

 

HyPSTER stands for Hydrogen Pilot STorage for large Ecosystem Replication

 

Storage: A critical facility in the green hydrogen sector

 

This demonstrator, the flagship of the development of green hydrogen underground storage in Europe, is fully in line with the objective of lowering the economy’s carbon intensity, as well as the EU recovery plan, and integrates a link in the Hydrogen value chain which hasn’t been tested yet: underground storage. Its aim is to test industrial-scale green hydrogen production and storage in salt caverns and the technical and economic reproducibility of the process to other sites throughout Europe.

HyPSTER marks another stage in energy transition for phasing out of fossil energy, in favour of renewable, carbon-free energy sources.

 

For the production of green hydrogen, the Etrez storage site will rely on local renewable energy sources (photovoltaic, hydroelectric) and a 1-MW electrolyser. In the long run, this facility will produce 400 kg of hydrogen per day (the equivalent of the consumption of 16 hydrogen buses*).

This production will enable to test the storage of 2 to 3 tons of green hydrogen during the first stage, before using the total capacity of the chosen salt cavern, amounting to 44 tons (the equivalent of the daily consumption of 1,760 hydrogen buses*).

 

Etrez: A site located ideally at the crossroads of production, storage and consumption

 

Located north-west of Bourg-en-Bresse, on the north-south European corridor, the Etrez storage site is the largest French natural gas storage site in salt caverns in terms of capacity.

 

The site area is particularly dynamic regarding the development of the use of green hydrogen with large-scale projects such as Zero Emission Valley (Project ZEV) in the region of Auvergne-Rhône-Alpes, the construction of hydrogen production units and filling stations in the region of Bourgogne-Franche-Comté, and the Chemical Valley with the presence of many industrial players.

 

*One bus tank containing 25 kg of hydrogen

 

A closer look at hydrogen:

Hydrogen from renewable production has a prime position in energy transition.

It can be utilised for a variety of purposes:

– in the industry (chemical, electronic, glass, metal…), hydrogen can be used to produce different materials, but also for energy purposes (steam, for instance), and to lower the carbon intensity of the production chain;

– in transports and mobility, it replaces traditional fuels with the advantage of not generating any emissions while offering significant autonomy and very short refuelling time.

Thanks to green hydrogen, renewable energy sources can access hard to decarbonise sectors

 

The project stakeholders and their roles

 

  • Storengy (FR): Project coordinator for all partners, manages and operates the storage site and the salt cavern used for testing.
  • Armines-Ecole Polytechnique (FR): Different academic studies which are part of the HyPSTER project.
  • INOVYN (UK): Definition of the ideal salt cavern utilisation cycle (hydrogen input/output for consumption).
  • ESK (DE): Validation of engineering design and transfer of existing cycling models (from natural gas storage) for hydrogen storage.
  • Element Energy (UK): Validation of the techno-economic approach of the demonstrator and assessment of potential for replicability to other sites/countries.
  • Ineris (FR): Expertise in the demonstrator’s environmental risks. Analysis and the regulatory framework for a safe development of this industry in Europe.
  • Axelera (FR): Operational result monitoring and sharing with all partners and the scientific community. Communication, dissemination, strategic intelligence and networking with stakeholders, in order to facilitate the use and replication of HyPSTER’s solutions beyond the project.

 

The project timeline

 

  • 2020: Definition of the regulatory framework for the project. Reception of financing by the European Union (FCH-JU), signature of the consortium agreement by all partners
  • 2021: Start of the engineering studies.
  • 2022: Construction of the electrolysis unit for on-site green hydrogen production.
  • 2023: Experimentation of hydrogen storage in a salt cavern and hydrogen production.

 

About Storengy:

Storengy, an ENGIE subsidiary, is one of the world leaders in underground natural gas storage. Drawing on 60 years of experience, Storengy designs, develops and operates storage facilities and offers its customers innovative products. The company owns 21 natural gas storage sites with a total capacity of 136 TWh in France, Germany and the United Kingdom. Storengy is positioned today as a key player in the development of geothermal energy (heat/cold production and power generation), as well as innovative production and storage solutions for renewable gas (biomethane, hydrogen, synthetic methane). In the hydrogen sector, Storengy is a member of France Hydrogène (formerly AFHYPAC), as well as the association Hydrogen Europe. www.storengy.com

About Armines-Ecole Polytechnique:

Armines is the largest French research structure oriented towards businesses, with 48 joint training centres (Ecoles-Armines), including Ecole Polytechnique. Ecole Polytechnique is the leading French institution combining top-level research, academics, and innovation at the cutting-edge of science and technology. With its 23 laboratories, the Ecole Polytechnique Research Center explores the frontiers of interdisciplinary knowledge to provide major contributions to science, technology, and society. www.armines.net www.polytechnique.edu

About INOVYN:

Formed on 1 July 2015 and part of INEOS, INOVYN is a vinyls producer that ranks among the top three worldwide. With a turnover above €3.5 billion, INOVYN has more than 4,300 employees and manufacturing, sales and marketing operations in ten countries across Europe. INOVYN’s portfolio consists of an extensive range of class-leading products arranged across Organic Chlorine Derivatives; Chlor Alkali; General Purpose Vinyls; Specialty Vinyls; Sulphur Chemicals; Salt; and Electrochemical and Vinyls Technologies. Annual production volumes are more than 40 million tonnes. www.inovyn.com

About ESK:

As a renowned engineering company for energy storage and energy system services, ESK GmbH has been successfully managing both national and international projects for many years. Our highly qualified team, mainly consisting of engineers and geoscientists, has many years of experience and extensive know-how, especially in the fields of porous rock and cavern storage technology. ESK employs a total of 80 people at the Holzwickede and Freiberg locations and in offices in Leipzig and Staßfurt, Germany. www.esk-projects.com

About Element Energy:

Element Energy is a low carbon, sustainability and consumer behaviour consultancy and engineering practice providing strategic advice, computational modelling, software development and engineering consultancy across the buildings, transport and power sectors for a broad range of clients. Element Energy has a decade-long experience with hydrogen technologies as a consulting SME and brings to the project its knowledge of the supply and demand for stored hydrogen strategic analysis for the eventual replication of the salt cave storage technologies as well as experience in the delivery of hydrogen projects and management of R&D consortium. www.element-energy.co.uk

About Ineris:

Ineris (National Institute for the Industrial Environment and Risks) is an industrial and commercial public Institute under the aegis of the Ministry of the Environment managing industrial and environmental risks. The institute carries out research activities requested by industrial operators and / or public authorities in the field of risk assessment, prevention and protection in connection with industrial activities, in particular in underground environments. INERIS has developed over the years a solid expertise in the field of environmental risk assessment related to underground storage activities. Ineris has also large scale laboratories for H2 experiments and testing. This expertise is based on both experimental skills (particularly in situ), numerical modelling and risk assessment methods for health and the environment. https://www.ineris.fr/fr

 

About AXELERA Auvergne-Rhône-Alpes:

Axelera Auvergne-Rhône-Alpes is a French cluster at the crossroads of the chemical and environmental sectors. Axelera aims to help mature green hydrogen projects with its members from ideas to marketable products and processes as part of its more global commitment to developing sustainable, efficient, circular and clean solutions for industry. Axelera’s public-private network of 367 members gathers expertise in: • Materials, chemicals, equipment and system manufacturing and integration • Process engineering, industrial energy and resource efficiency, and regulatory compliance • Circular economy • Water, air, and soil depollution • Renewable raw materials • Digitalization of the process industries. www.axelera.org.

About FCHU-JU:

The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) is a unique public private partnership supporting research, technological development and demonstration (RTD) activities in fuel cell and hydrogen energy technologies in Europe. Its aim is to accelerate the market introduction of these technologies, realizing their potential as an instrument in achieving a carbon-clean energy system.

Fuel cells, as an efficient conversion technology, and hydrogen, as a clean energy carrier, have a great potential to help fight carbon dioxide emissions, to reduce dependence on hydrocarbons and to contribute to economic growth. The objective of the FCH JU is to bring these benefits to Europeans through a concentrated effort from all sectors.

The three members of the FCH JU are the European Commission, fuel cell and hydrogen industries represented by Hydrogen Europe and the research community represented by Hydrogen Europe Research. https://www.fch.europa.eu/

Posted in Project Management

Element Energy supports UK Power Networks in their Distribution Future Energy Scenarios

Posted on


UK Power Networks, 
the electricity Distribution Network Operator for London, the South East and the East of Englandrecently published its Distribution Future Energy Scenarios presenting different potential futures for their network. Element Energy undertook the analysis to support the scenarios and authored the report.  

The work constitutes a comprehensive and rigorously research view of the range of future outcomes for the uptake of key drivers of electricity demand and generation across UK Power Networks’ region as the UK takes steps to decarbonise. Key features of the work include that:

  • The work benefited from an extensive programme of regional stakeholder engagement, where we discussed local plans for decarbonisation with a range of local government stakeholders. 
  • The scenario data is highly spatially resolved (down to Lower Layer Super Output Area [LSOA] level). 
  • The scenarios have been constructed in a flexible manner so that they can easily be updated to reflect policy and technological change in forthcoming years.  

Element Energy will continue to work closely with UK Power Networks to integrate these scenarios with their business planning tools and we will also work together to refresh the scenarios on an annual basis 

The detailed LSOA-level scenario data is accessible on the Open Data portal of UK Power Networks’ website  

See the press release from UK Power Network’s here. 

For more details on the work please contact Jake Howe or Ian Walker

Posted in Energy Networks

As Europe prepares for ambitious revisions to its regulatory framework to support the Green Deal’s targets, key findings from the largest European hydrogen mobility initiative highlight the role hydrogen can play

Posted on

A flagship project for hydrogen mobility involving nearly 50 organisations at the forefront of the sector has today published its final report detailing the key findings and learnings. The findings are released at a crucial time as the European Green Deal seeks a 90% reduction in transport related emissions by 2050.

Hydrogen Mobility Europe (H2ME) has completed its first phase and compiled a rich dataset since initiating in 2016: 630 hydrogen fuel cell electric vehicles have been deployed in 10 countries and 37 new hydrogen refuelling stations installed in 8 countries, achieving 14.5 million km driven and 147 tonnes of hydrogen dispensed across 68,000 refuelling events. It is the largest European deployment for hydrogen mobility to date and demonstrates the commercial potential to rollout fuel cell electric vehicles (FCEVs) and hydrogen refuelling stations (HRS) for large and small fleets.

Following the conclusion of its initial phase, H2ME recommends national and international incentives that ensure the dispensed cost of low carbon hydrogen is competitive for vehicle operators to create a level playing field with other zero emission vehicles. National, regional, and local policies that ensure continued development of the industry are also recommended. The expansion of hydrogen infrastructure as a result of H2ME, co-funded by the FCH-JU, means more FCEVs now have access to refuelling stations however the limited infrastructure prevents full operational advantages of FCEVs being realised.

Incentives such as purchase grants and tax exemptions will unlock demand from vehicle operators and bring market confidence to vehicle suppliers. Similarly, financial support applied per unit (kg) of hydrogen sold, similar to the feed in tariffs which were applied to stimulate early renewable energy uptake, will lower the price of green hydrogen at the pump. This will enable high utilisation of refuelling stations, which strengthens its business case, demonstrated by clusters of captive fleets with high mileage and heavy-duty cycles as they have significantly lower costs per kilogram of hydrogen.

The second phase of deployment will focus on developing state of the art refuelling stations, increased options for producing green hydrogen, and targeting a wider range of vehicles (from light duty to heavy duty vehicles). The lessons from phase one show that future hydrogen mobility strategies should focus more on high mileage and heavy-duty applications to provide the anchor demand for new installations. This will provide a stronger business case to the HRS operators.

Hydrogen could play a key role in enabling high mileage applications can transition to zero emission as these applications have specific operational needs such as long range and short refuelling time, that can be met by FCEVs. The overall cost of operating FCEVs in these fleets is expected to decrease rapidly in the coming years. For example, an analysis from the ZEFER project found that for high mileages applications such as taxis, and with hydrogen at €7,5/kg, FCEVs can reach parity on a total cost of ownership basis with petrol/diesel hybrids in the next 5 years.

In Denmark three Hyundai ix35 FCEVs are used by the Municipality of Copenhagen for a variety of duties as part of H2ME. They average 120 km travelled per day, with recorded distances up to 500 km in a single day, and have access to three refuelling stations within driving range. Well-to-wheel (WTW) emissions from FCEVs in Denmark are calculated at 20 gCO2e/km, compared to 34 gCO2e/km for a battery electric vehicle, 47 gCO2e/km for a battery electric SUV and 217 gCO2e/km for a diesel comparator. The use of 100% green certified electrolytic hydrogen is key to the low emissions, however FCEVs still achieve significantly lower WTW emissions than diesel or gasoline vehicles even if using hydrogen derived from fossil fuels. Similar analysis conducted in Germany and France found that FCEVs achieve significant emission savings compared to diesel or gasoline vehicles, even if using fossil-derived hydrogen, and can be even more significantly when using low carbon or green hydrogen.

The fuel cell electric vehicles deployed have completed up to 600 km of driving range on a single tank, and prove reliable with over 99% availability over their operational usage since 2016. The confirmation of technology readiness, emerging business cases and customer proposition in the project shows a path towards commercialisation.

With increasing needs for zero emissions mobility solutions to achieve environmental targets, and economics expecting to improve rapidly at scale, there is a strong case to support the commercial rollout for hydrogen mobility.

Bart Biebuyck, Executive Director at Fuel Cells and Hydrogen Joint Undertaking (FCH JU), said: “The first phase of H2ME has demonstrated that light duty hydrogen fuel cell vehicles are performant and nearing market competition with other zero emissions vehicles for high mileage applications, like taxi fleets. In addition, our flagship project was successful in supporting the onset of a European H2 infrastructure for road transport. Today, Europe has a card to play: By integrating these learnings into the heavy duty truck sector, it can capitalise on best practices of vehicles fleets and infrastructure management, making an essential contribution to a green post-Covid recovery of our economy”.

Ben Madden, Director at Element Energy, said: “We are pleased to share the results and findings of the H2ME 1 project. This project would not have been possible without the support from the FCH JU and commitment of all partners involved. Grants to support early stage commercial deployments are a critical step in the path towards commercialisation and will remain one of the key financial tools at the European level in the coming year to develop solutions for zero-emission mobility. Element Energy is very proud to have coordinated this project and to continue supporting the largest hydrogen mobility initiative in Europe.”

Dr Duncan Yellen, Managing Director at ITM Motive, said: “Participation in the H2ME project has been invaluable in providing insights into both the engineering and customer requirements for our future build programme. Thanks to the learning provided here and through other funded projects we are confident in our ability to provide the best possible designs for building the next generation of Hydrogen Refuelling Stations across the UK to match the needs of heavy duty vehicles, high use car fleets and rail.”

Nikolas Iwan, CEO of H2 Mobility, said: “20 of the more than 90 stations in Germany have been built in the H2ME project. We are proud to be partner in the largest European hydrogen mobility initiative. Collaboration is the key to a successful mobility transition, especially in the next phase were rules and regulations have to be set for the light and heavy duty transport sector.”

Anna Margrét Kornelíusdóttir, Project Manager at Icelandic New Energy Ltd, said: “The Nordic countries have long had a faith in clean hydrogen produced from their abundant renewable energy resources. Our governments have made this clear by implementing generous economic incentives and ambitious strategies.

“H2ME has demonstrated the use and reliability of hydrogen and fuel cell technology for passenger vehicles across Europe and proven the feasibility of hydrogen as a transport fuel.

“Amid rising pressure to reach decarbonisation goals, hydrogen technology represents a low carbon and low emission energy solution that can play a vital role in the next steps addressing a transition to clean energy, not only for passenger vehicles, but also heavy-duty trucks, marine vessels and even aviation”.

Philippe Rosier, CEO of Symbio, said: “Symbio is proud to have been involved in the first and most important deployment project at the European level for hydrogen mobility. I have no doubt what we’ve learnt together during this first phase will be of great help for the future. This is a key factor to give Europe a leadership on hydrogen at the worldwide level, since combining acceleration on industrialization with deployment is the winning combination”.

Full report can be found here.

 

 

 

 

 

 

 

 

 

 

About H2ME

This €170 million demonstration project is co-funded with €67 million from the Fuel Cells and Hydrogen Joint Undertaking (FCH JU), a public-private partnership supporting fuel cell and hydrogen energy technologies in Europe.

Partners include project lead Element Energy, alongside AGA, Air Liquide, AREVA H2GEN, Audi, BOC, BMW, Cenex, City of Copenhagen (Kobenhavns Kommune), Communauté d’Agglomération Sarreguemines Confluence, CNR, Daimler AG, Danish Hydrogen Fuel, EIFER, GNVERT, H2 Mobility Deutschland, Honda, Hydrogen Denmark (Brintbranchen), Hydrogene de France, hySOLUTIONS, Hyundai, Icelandic New Energy Ltd, Intelligent Energy, Islenska Vetnisfelagid (H2 Iceland), Kerkhof, ITM Power, Linde AG, McPhy Energy, Michelin, Nel Hydrogen, Netherlands Ministry of Infrastructure and Water Management (Ministerie Van Infrastructuur en Waterstaat), Nissan, OMV, OPEN ENERGI, Renault, Renault Trucks, SEMITAN, Stedin, STEP, Symbio, Toyota, The University of Manchester, WaterstofNet.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671438 & No 700350. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Posted in Hydrogen and Fuel Cells, Project Management

Consortium receives funding to investigate offshore hydrogen production

Posted on

 

ITM Power, Ørsted, Siemens Gamesa Renewable Energy, and Element Energy have been awarded EUR 5 million in funding from The Fuel Cells and Hydrogen Joint Undertaking (FCH2-JU) under the European Commission to demonstrate and investigate a combined wind turbine and electrolyser system designed for operation in marine environments.

The Fuel Cells and Hydrogen 2 Joint Undertaking (FCH2-JU), a public private partnership of the European Commission, has awarded the consortium behind the OYSTER project, consisting of ITM Power, Ørsted, Siemens Gamesa Renewable Energy, and Element Energy EUR 5 million to investigate the feasibility and potential of combining an offshore wind turbine directly with an electrolyser and transporting renewable hydrogen to shore. The consortium will develop and test a megawatt-scale fully marinised electrolyser in a shoreside pilot trial. The project will be coordinated by Element Energy.

To realise the potential of offshore hydrogen production, there is a need for compact electrolysis systems that can withstand harsh offshore environments and have minimal maintenance requirements while still meeting cost and performance targets that will allow production of low-cost hydrogen. The project will provide a major advance towards this aim.

The electrolyser system will be designed to be compact, to allow it to be integrated with a single offshore wind turbine, and to follow the turbine’s production profile. Furthermore, the electrolyser system will integrate desalination and water treatment processes, making it possible to use seawater as a feedstock for the electrolysis process.

The OYSTER project partners share a vision of hydrogen being produced from offshore wind at a cost that is competitive with natural gas (with a realistic carbon tax), thus unlocking bulk markets for green hydrogen making a meaningful impact on CO2 emissions, and facilitating the transition to a fully renewable energy system in Europe.

This project is a key first step on the path to developing a commercial offshore hydrogen production industry and will demonstrate innovative solutions with significant potential in Europe and beyond.

The project is planned to start in 2021 and run to the end of 2024. ITM Power is responsible for the development of the electrolyser system and the electrolyser trials, while Ørsted will lead the offshore deployment analysis, the feasibility study of future physical offshore electrolyser deployments, and support ITM Power in the design of the electrolyser system for marinisation and testing. Siemens Gamesa Renewable Energy and Element Energy are providing technical and project expertise.

Dr Graham Cooley, CEO of ITM Power, said: “ITM Power are delighted to be part of this exciting project, working alongside industry leaders to explore the potential to harness wind for offshore green hydrogen production.”

Anders Christian Nordstrøm, Vice President and Head of Ørsted’s hydrogen activities, said: “To create a world that runs entirely on green energy, we need to electrify as much as we can. However, some sectors cannot decarbonise through electrification and that’s where renewable hydrogen could play a significant role. Offshore hydrogen production could be a future, supplemental way of getting large amounts of energy generated from offshore wind power to shore. As the largest offshore wind company in the world, we’re of course keen to better understand what it will take to produce renewable hydrogen offshore as a potential future supplement to production of renewable electricity. Having pioneered the offshore wind industry, we know that thorough analysis and testing are required before deploying new technologies at sea.”

Bart Biebuyck, Executive Director, Fuel Cells and Hydrogen Joint Undertaking (FCH JU), said: “The OYSTER project is a very exciting addition to the FCH JU pallet of electrolysis projects that will allow the development of an offshore-spec electrolyser for green hydrogen to be generated in the harsh offshore environment. The aim is the optimal integration of electrolysers with off-shore wind turbines to store the energy generated in the form of hydrogen. We are absolutely delighted to support this innovative project which reduces the environmental impact in further industrial applications.”

Michael Dolman, Associate Director at Element Energy, said: “Offshore wind is now one of the lowest cost forms of electricity generation in Europe and will have an important role in Europe’s decarbonisation plans. There is growing interest in transporting renewable energy in the form of hydrogen, particularly for sites far from shore. Realising such a vision will require further development and innovations of the type to be demonstrated in the OYSTER project, which Element Energy is pleased to coordinate.”

 

For further information, please contact:

Ørsted: Michael Korsgaard Nielsen, Media Relations Manager: MIKON@orsted.dk

ITM Power plc: Rebecca Markillie, Marketing and Communications Manager: RLM@itm-power.com

 

About the OYSTER project and the FCH2-JU

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH2-JU) under grant agreement No. 101006751. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme, Hydrogen Europe, and Hydrogen Europe Research. The FCH2-JU is a unique public-private partnership supporting research, technological development, and demonstration (RTD) activities in fuel cell and hydrogen energy technologies in Europe. Its aim is to accelerate the market introduction of these technologies, realising their potential as an instrument in achieving a carbon-clean energy system.

 

About ITM Power

ITM Power plc manufactures integrated hydrogen energy solutions for grid balancing, energy storage and the production of renewable hydrogen for transport, renewable heat and chemicals. ITM Power plc was admitted to the AIM market of the London Stock Exchange in 2004.  In October 2019, the Company announced the completion of a £58.8 million fundraise, including a subscription by Linde of £38 million, together with the formation of a joint-venture with Linde to focus on delivering renewable hydrogen to large scale industrial projects worldwide.

In November 2020, ITM Power completed a £172m fund raise, including £30m from Snam, one of the world’s leading energy infrastructure operators. ITM Power signed a forecourt siting agreement with Shell for hydrogen refuelling stations in September 2015, (which was extended in May 2019 to include buses, trucks, trains and ships) and in January 2018 a deal to deploy a 10MW electrolyser at Shell’s Rhineland refinery. ITM Power announced the lease of the world’s largest electrolyser factory in Sheffield with a capacity of 1GW (1,000MW) per annum in July 2019. Customers and partners include Sumitomo, Ørsted, Phillips 66, National Grid, Cadent, Northern Gas Networks, Gasunie, RWE, Engie, BOC Linde, Toyota, Honda, Hyundai and Anglo American among others.

 

About Ørsted

Ørsted’s vision is to create a world that runs entirely on green energy. Ørsted develops, constructs, and operates offshore and onshore wind farms, solar farms, energy storage facilities, and bioenergy plants, and provides energy products to its customers. Ørsted ranks #1 in Corporate Knights’ 2020 index of the Global 100 most sustainable corporations in the world and is recognised on the CDP Climate Change A List as a global leader on climate action. Headquartered in Denmark, Ørsted employs 6,120 people. Ørsted’s shares are listed on Nasdaq Copenhagen (Orsted). In 2019, the company generated revenue of DKK 67.8 billion (EUR 9.1 billion).

 

About Siemens Gamesa Renewable Energy

Siemens Gamesa is a global leader in the wind power industry, with a strong presence in all facets of the business: offshore, onshore and services. The company’s advanced digital capabilities enable it to offer one of the broadest product portfolios in the sector as well as industry-leading service solutions, helping to make clean energy more affordable and reliable. With more than 107 GW installed worldwide, Siemens Gamesa manufactures, installs and maintains wind turbines, both onshore and offshore. The company’s orders backlog stands at €30.2 billion. The company is headquartered in Spain and listed on the Spanish stock exchange (trading on the Ibex-35 index).

 

About Element Energy

Element Energy is a dynamic and growing zero carbon energy consultancy. We specialise in the intelligent analysis of zero carbon energy and help our clients understand zero carbon technology options and develop innovative projects using these technologies. Element Energy is involved in many of the largest hydrogen deployment projects across Europe. These include a number of projects based around large scale renewable hydrogen production and associated end uses in the transport and industrial sectors.

 

 

 

 

 

 

 

 

 

 

 

 

Posted in Hydrogen and Fuel Cells, Project Management
← Older posts